Front motion for phase transitions in systems with memory
نویسندگان
چکیده
We consider the following partial integro-differential equation (Allen–Cahn equation with memory): φt = ∫ t 0 a(t − t ′)[ ∆φ + f (φ)+ h](t ′) dt ′, where is a small parameter, h a constant, f (φ) the negative derivative of a double well potential and the kernel a is a piecewise continuous, differentiable at the origin, scalar-valued function on (0,∞). The prototype kernels are exponentially decreasing functions of time and they reduce the integro-differential equation to a hyperbolic one, the damped Klein–Gordon equation. By means of a formal asymptotic analysis, we show that to the leading order and under suitable assumptions on the kernels, the integro-differential equation behaves like a hyperbolic partial differential equation obtained by considering prototype kernels: the evolution of fronts is governed by the extended, damped Born–Infeld equation. We also apply our method to a system of partial integro-differential equations which generalize the classical phase-field equations with a non-conserved order parameter and describe the process of phase transitions where memory effects are present: ut + φt = ∫ t 0 a1(t − t ′)∆u(t ′) dt ′, φt = ∫ t 0 a2(t − t ′)[ ∆φ + f (φ)+ u](t ′) dt ′, where is a small parameter. In this case the functionsu andφ represent the temperature field and order parameter, respectively. The kernels a1 and a2 are assumed to be similar to a. For the phase-field equations with memory we obtain the same result as for the generalized Klein–Gordon equation or Allen–Cahn equation with memory. © 2000 Published by Elsevier Science B.V.
منابع مشابه
سیستمهای ناکام و همبسته الکترونی
Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the hig...
متن کاملStability of Three-Wheeled Vehicles with and without Control System
In this study, stability control of a three-wheeled vehicle with two wheels on the front axle, a three-wheeled vehicle with two wheels on the rear axle, and a standard four-wheeled vehicle are compared. For vehicle dynamics control systems, the direct yaw moment control is considered as a suitable way of controlling the lateral motion of a vehicle during a severe driving maneuver. In accorda...
متن کاملThe Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems
Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...
متن کاملDynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation
This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...
متن کاملMagnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice
Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization, internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.
متن کامل